Microwave-Assisted Solution–Liquid–Solid Synthesis of Single-Crystal Copper Indium Sulfide Nanowires

2015 
Chalcopyrite copper indium sulfide (CuInS2) is an important semiconductor with a bandgap optimal for terrestrial solar energy conversion. Building photovoltaic and microelectronic devices using one-dimensional CuInS2 nanowires can offer directional conduits for rapid and undisrupted charge transport. Currently, single-crystal CuInS2 nanowires can be prepared only using vapor-based methods. Here, we report, for the first time, the synthesis of single-crystal CuInS2 nanowires using a microwave-assisted solution–liquid–solid (MASLS) method. We show that CuInS2 nanowires with diameters of less than 10 nm can be prepared at a rapid rate of 33 nm s–1 to more than 10 μm long in less than 10 min, producing a high mass yield of 31%. We further show that the nanowires are free of structural defects and have a near-stoichiometric composition. The success of MASLS in preparing high-quality tertiary nanowires is explained by a eutectic growth mechanism involving an overheated alloy catalyst.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    4
    Citations
    NaN
    KQI
    []