Light NUCA: a proposal for bridging the inter-cache latency gap

2009 
To deal with the “memory wall” problem, microprocessors include large secondary on-chip caches. But as these caches enlarge, they originate a new latency gap between them and fast L1 caches (inter-cache latency gap). Recently, Non-Uniform Cache Architectures (NUCAs) have been proposed to sustain the size growth trend of secondary caches that is threatened by wire-delay problems. NUCAs are size-oriented, and they were not conceived to close the inter-cache latency gap. To tackle this problem, we propose Light NUCAs (L-NUCAs) leveraging on-chip wire density to interconnect small tiles through specialized networks, which convey packets with distributed and dynamic routing. Our design reduces the tile delay (cache access plus one-hop routing) to a single processor cycle and places cache lines at a finer granularity than conventional caches, reducing cache latency. Our evaluations show that in general, an L-NUCA improves simultaneously performance, energy, and area when integrated into both conventional or D-NUCA hierarchies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    3
    Citations
    NaN
    KQI
    []