From granules to bulk superconductors using Richardson-Gaudin equations

2016 
We provide a compact expression of the ground-state energy of N-Cooper pairs valid from small to large sample volumes, as checked by numerically solving Richardson-Gaudin equations which give the exact eigenstates of BCS superconductors. This expression contains a contribution linear in the potential amplitude, dominant for small samples, and an exponential contribution dominant when the number of states available for pairing gets larger than a material-dependent threshold independent from sample size. These “available states” are the states feeling the BCS potential, reduced by the Pauli exclusion principle through a “moth-eaten effect” which comes from the composite boson nature of Cooper pairs. This work also presents an elegant derivation of the N-Cooper pair energy obtained recently, which makes use of the roots of the degree-N Hermite polynomial.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []