Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor

2018 
Abstract The use of nitrite-dependent anaerobic methane oxidation (n-damo) processes could represent an innovative technology in order to minimize the environmental impact of anaerobic sewage effluents at low temperatures, since these biological processes are able to simultaneously remove nitrite and dissolved methane in anaerobic conditions. Nevertheless, n-damo bacteria are well-known by their reported low activity and slow doubling times which hinders a practical application. On this study, the enrichment on these bacteria was successfully achieved in a membrane bioreactor system at 28 °C. Despite biomass accumulation was not detected, a high apparent specific n-damo activity of 95.5 mg NO 2 − -N g −1  MLVSS d −1 was achieved after 388 days of operation, being one of the highest nitrite removal rates reported in the literature for n-damo cultures to date. Additionally a slow doubling time of 11.5 d was estimated. 16S rRNA gene amplicon sequencing analysis indicated that Candidatus Methylomirabilis became the most abundant bacterial organism by day 344 with a relative abundance of 50.2%. During the entire experiment ammonium was continuously added to the system as an alternative nitrogen source, to avoid biomass growth limitations. Finally, a relation between permeate nitrite concentrations and nitrous oxide production was found, which allows to optimize the process in terms of the minimization of both nitrogen species. The nitrous oxide emissions represented between 0 and 3.7% of the denitrified nitrogen.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    33
    Citations
    NaN
    KQI
    []