An Approach on MCSA-Based Fault Detection Using Independent Component Analysis and Neural Networks

2019 
This paper presents a novel approach on motor current signature analysis (MCSA) for broken bar fault detection of induction motors (IMs), using as input the current signal measured from one of the three motor phases. Independent component analysis (ICA) is used over the Fourier-domain spectral signals obtained from the input and its autocorrelation function. The standard deviation of spectral components within a region of interest (ROI) of an ICA signal output was found to exhibit substantial differences between damaged and healthy motors. Separation of the ROI in one, two, and three sectors leads to an improved extraction of feature vectors, which are further fed into a neural network for classification purposes. The assessment of the proposed method is carried out through several experiments using two damage levels (broken bar and half broken bar) and two load motor conditions (50% and 75%), with a classification accuracy ranging from 90% to 99%. The contribution of this paper lies in a new technique of signal processing for ICA-based feature extraction in a 3-D feature space for IM fault diagnosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    28
    Citations
    NaN
    KQI
    []