Autoencoder Based Analysis of RF Parameters in the Fermilab Low Energy Linac

2021 
Machine learning (ML) has the potential for significant impact on the modeling, operation, and control of particle accelerators due to its ability to model nonlinear behavior, interpolate on complicated surfaces, and adapt to system changes over time. Anomaly detection in particular has been highlighted as an area where ML can significantly impact the operation of accelerators. These algorithms work by identifying subtle behaviors of key variables prior to negative events. Efforts to apply ML to anomaly detection have largely focused on subsystems such as RF cavities, superconducting magnets, and losses in rings. However, dedicated efforts to understand how to apply ML for anomaly detection in linear accelerators have been limited. In this paper the use of autoencoders is explored to identify anomalous behavior in measured data from the Fermilab low-energy linear accelerator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []