Non-collinear Instability of Ferromagnetic Mn5Ge3 compound

2006 
Mn5Ge3 thin films epitaxially grown on Ge(111) exhibit metallic conductivity and strong ferromagnetism up to about 300 K. Recent experiments suggest a non-collinear spin structure. In order to gain deep insights into the magnetic structure of this compound, we have performed fully unconstrained ab-initio pseudopotential calculations within density functional theory, investigating the different magnetic states corresponding to Collinear (C) and Non-Collinear (NC) spin configurations. We focus on their relative stability under pressure and strain field. Under pressure, the C and NC configurations are degenerate, suggesting the possible occurrence of accidental magnetic degeneracy also in Mn5Ge3 real samples. We found a continuous transition from a ferromagnetic C low-spin state at small volumes to a NC high-spin state at higher volumes. Remarkably, the degeneracy is definitely removed under the effect of uniaxial strain: in particular, NC spin configurations is favoured under tensile uniaxial strain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []