Unlocking the secrets of Al-tobermorite in Roman seawater concrete

2013 
Ancient Roman syntheses of Al-tobermorite in a 2000-year-old concrete block submerged in the Bay of Pozzuoli (Baianus Sinus), near Naples, have unique aluminum-rich and silica-poor compositions relative to hydrothermal geological occurrences. In relict lime clasts, the crystals have calcium contents that are similar to ideal tobermorite, 33 to 35 wt%, but the low-silica contents, 39 to 40 wt%, reflect Al 3+ substitution for Si 4+ in Q 2 (1Al), Q 3 (1Al), and Q 3 (2 Al) tetrahedral chain and branching sites. The Al-tobermorite has a double silicate chain structure with long chain lengths in the b [020] crystallographic direction, and wide interlayer spacing, 11.49 A. Na + and K + partially balance Al 3+ substitution for Si 4+ . Poorly crystalline calcium-aluminum-silicate-hydrate (C-A-S-H) cementitious binder in the dissolved perimeter of relict lime clasts has Ca/(Si+Al) = 0.79, nearly identical to the Al-tobermorite, but nanoscale heterogeneities with aluminum in both tetrahedral and octahedral coordination. The concrete is about 45 vol% glassy zeolitic tuff and 55 vol% hydrated lime-volcanic ash mortar; lime formed <10 wt% of the mix. Trace element studies confirm that the pyroclastic rock comes from Flegrean Fields volcanic district, as described in ancient Roman texts. An adiabatic thermal model of the 10 m 2 by 5.7 m thick Baianus Sinus breakwater from heat evolved through hydration of lime and formation of C-A-S-H suggests maximum temperatures of 85 to 97 °C. Cooling to seawater temperatures occurred in two years. These elevated temperatures and the mineralizing effects of seawater and alkali- and alumina-rich volcanic ash appear to be critical to Al-tobermorite crystallization. The long-term stability of the Al-tobermorite provides a valuable context to improve future syntheses in innovative concretes with advanced properties using volcanic pozzolans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    86
    Citations
    NaN
    KQI
    []