Thermal Schwinger Effect: Defect Production in Compressed Filament Bundles.

2021 
We discuss the response of biopolymer filament bundles bound by transient cross linkers to compressive loading. These systems admit a mechanical instability at stresses typically below that of traditional Euler buckling. In this instability, there is thermally-activated pair production of topological defects that generate localized regions of bending -- kinks. These kinks shorten the bundle's effective length thereby reducing the elastic energy of the mechanically loaded structure. This effect is the thermal analog of the Schwinger effect, in which a sufficiently large electric field causes electron-positron pair production. We discuss this analogy and describe the implications of this analysis for the mechanics of biopolymer filament bundles of various types under compression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []