Adaptive Real-Time Rendering for Large-Scale Molecular Models

2006 
Real-time surface rendering of large-scale molecular models such as a colon bacillus requires a great number of polygons to be displayed on a display device. Since a long latency of display and manipulation is fatal in maintaining presence in a virtual environment, high performance computing power and high quality graphical components are required to exercise real-time rendering of such a large-scale molecular model. We propose an algorithm which enables a PC level computer to render and display large-scale molecular models in real-time. The proposed algorithm adaptively visualizes large-scale molecular models. We tested our algorithm with molecular models of which polygons range from 533,774 polygons to 2,656,246 polygons. Our experiments showed that frame rates of displaying and manipulating the models ranged from 17.85 to 55.64 frames-per-second. The frames rates are 4.3 to 6.9 times higher than those of the models which are obtained using a conventional system. Our system enables biologists to display and manipulate large-scale molecular models in real-time which could not be done fast enough to be used in a virtual environment using the conventional systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    2
    Citations
    NaN
    KQI
    []