Entanglement of single-photons and chiral phonons in atomically thin WSe 2

2019 
Quantum entanglement is a fundamental phenomenon that, on the one hand, reveals deep connections between quantum mechanics, gravity and spacetime1,2, and on the other hand, has practical applications as a key resource in quantum information processing3. Although it is routinely achieved in photon–atom ensembles4, entanglement involving solid-state5–7 or macroscopic objects8 remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in a two-dimensional WSe2 host—chiral phonons (CPs)—and single-photons emitted from quantum dots9–13 (QDs) present in it. CPs that carry angular momentum were recently observed in WSe2 and are a distinguishing feature of the underlying honeycomb lattice14,15. The entanglement results from a ‘which-way’ scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interactions between CPs and QDs in two-dimensional materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    65
    Citations
    NaN
    KQI
    []