Hepatic Sinusoids vs. Central Veins: Structures, Markers, Angiocrines, and Roles in Liver Regeneration and Homeostasis

2020 
The blood circulates through the hepatic sinusoids delivering nutrients and oxygen to the liver parenchyma and drains into the hepatic central vein, yet the structures and phenotypes of these vessels are distinctively different. Sinusoidal endothelial cells are uniquely fenestrated, lack basal lamina and possess organelles involved in endocytosis, pinocytosis, degradation, synthesis and secretion. Hepatic central veins are nonfenestrated but are also active in synthesis and secretion. Endothelial cells of sinusoids and central veins secrete angiocrines that play respective roles in hepatic regeneration and metabolic homeostasis. The list of markers for identifying sinusoidal endothelial cells is long and their terminologies are complex. Further, their uses vary in different investigations and, in some instances, could be confusing. Central vein markers are fewer but more distinctive. Here we analyze and categorize the molecular pathways/modules associated with the sinusoid-mediated liver regeneration in response to partial hepatectomy and chemical-induced acute or chronic injury. Similarly, we highlight the findings that central vein-derived angiocrines interact with Wnt/β-catenin in perivenous hepatocytes to direct gene expression and maintain pericentral metabolic zonation. The proposal that perivenous hepatocytes behave as stem/progenitor cells to provoke hepatic homeostatic cell renewal is reevaluated and newer concepts of broad zonal distribution of hepatocyte proliferation in liver homeostasis and regeneration are updated. Thus, this review integrates the structures, biology and physiology of liver sinusoids and central veins in mediating hepatic regeneration and metabolic homeostasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    139
    References
    1
    Citations
    NaN
    KQI
    []