A Hybrid Feature Selection Method for Predicting User Influence on Twitter

2015 
This paper proposes a hybrid feature selection method for predicting user influence on Twitter. A set of candidate features from Twitter is identified based on the five attributes of influencers defined in sociology. Firstly, less relevant features are filtered out with a feature-weighting algorithm. Then the Sequential Backward Floating Selection is utilized as the search strategy. A Back Propagation Neural Network is employed to evaluate the feature subset at each step of searching. Finally, an optimal feature set is obtained for predicting user influence with a high degree of accuracy. Experimental results are provided based on a real world Twitter dataset including seven million tweets associated with 200 popular users. The proposed method can provide a set of features that could be used as a solid foundation for studying complicated user influence evaluation and prediction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []