Magnetoelastic effects in doped Fe2P

2013 
We use combined high resolution neutron diffraction (HRPD) with density functional theory (DFT) to investigate the exchange striction at the Curie temperature (T-C) of Fe2P and to examine the effect of boron and carbon doping on the P site. We find a significant contraction of the basal plane on heating through T-C with a simultaneous increase of the c axis that results in a small overall volume change of similar to 0.01%. At the magnetic transition the Fe-I-Fe-I distance drops significantly and becomes shorter than Fe-I-Fe-II. The shortest metal-metalloid (Fe-I-P-I) distance also decreases sharply. Our DFT model reveals the importance of the latter as this structural change causes a redistribution of the Fe I moment along the c axis (Fe-P chain). We are able to understand the site preference of the dopants, the effect of which can be linked to the increased moment on the Fe-I site, brought about by strong magnetoelasticity and changes in the electronic band structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    29
    Citations
    NaN
    KQI
    []