Fretting Wear Properties of Thermally Deformed Inconel 625 Alloy

2020 
The effect of microstructure on fretting wear behavior of Inconel 625 alloy was studied after different thermal deformation conditions (strain rate and temperature). The results show that grain size and microhardness have a significant influence on the fretting wear. As thermal deformation temperature increases and strain rate decreases, grain size increases and microhardness decreases. The oxide formed on the surface of Inconel 625 helps to reduce wear, but oxidative wear is the main wear mechanism. In the thermal deformation temperature range of 900–1000 °C and strain rate of 0.1–1 s−1, grain size is less than 4.5 μm, and the hardness is greater than 252.9 HV. Under these conditions, the coefficient of friction is the highest and the wear volume is the lowest. This paper proposes to improve the fretting wear resistance of the workpiece by adjusting the strain rate and temperature during the thermal deformation process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    2
    Citations
    NaN
    KQI
    []