Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions

2019 
Abstract Freshwater species are adapted to and depend on various discharge conditions, such as 32 indicators of hydrologic alteration (IHA). Knowing how these indicators will be altered under climate change is essential for predicting species response and to develop mitigation concepts. The simulation of IHA under climate change is subject to considerable uncertainties which should be considered to obtain credible and robust predictions. Therefore, we investigated the major uncertainties inherent in climate change data and processing: general circulation model (GCM) and regional climate model (RCM) choice, representative concentration pathway (RCP) scenario, bias correction (BC) method, all within three mesoscale catchments in the European ecoregions: Central Plains, Central Highlands, and Alpine. Highest uncertainties were caused by the GCM and RCM choice, followed by the type of BC and the RCP. For the prediction, we reduced these uncertainties tailored to the ideal depiction of the IHA in each ecoregion. Together with a significance test, this enabled a robust depiction of the change in IHA for two future time periods. We found diverging changes within the ecoregions, caused by the complex interaction between precipitation, temperature and the governing catchment hydrological processes. The results provide an important basis for further impact research, especially for ecological freshwater studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    22
    Citations
    NaN
    KQI
    []