Coherent phonon dynamics in a c-plane sapphire crystal before and after intense femtosecond laser irradiation

2020 
Femtosecond pump-probe experiments with a ∼6.4 fs time-resolution were performed to investigate the coherent phonon dynamics in a c-plane sapphire crystal before and after intense 800 nm femtosecond laser irradiation. The intense femtosecond laser induced defect/distortion and even re-crystallization of crystalline structures, which result in the appearance of new peaks and relative intensity change in coherent phonon and Raman spectra. The combination of these two spectra was found to be beneficial to evidence the variation of crystalline structure and further to differentiate the origins of new Raman peaks after irradiation. Further analysis of time-dependent differential absorbance with damped cosine function fitting and Fourier transfer calculation yields the vibrational parameters, including periods, damping times and initial phases, before and after irradiation. With these parameters, the defect-effects on damping time and the mechanism of coherent phonon generation were addressed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []