002) Oriented Bi2O2CO3 Nanosheets with Enhanced Photocatalytic Performance for Toluene Removal in Air
2020
Layer-structured Bi2O2CO3 is a novel photocatalyst for eliminating environmental pollutants. In this work, Bi2O2CO3 nanosheets were synthesized by hydrothermal methods, followed by annealing in nitrogen. (002) oriented Bi2O2CO3 nanosheets were obtained and characterized by XRD, SEM, XPS, BET and UV-Vis diffuse reflectance spectra. Photocatalytic properties were investigated by toluene removal in air, with the assistant of Bi2O2CO3 nanosheets under artificial irradiation. Our results show that Bi2O2CO3 annealed in nitrogen exhibited high full-light-driven photocatalytic activity for toluene photocatalytic decomposition, which may be ascribed to facet orientation evolution during the annealing process and enhanced efficient charge separation. The sample annealed at 150 °C for 8 h (BOC-150-8 h) showed high stability and the highest toluene removal rate, which was up to 99%. The final degradation products were detected by gas chromatography–mass spectrometer (GC-MS) and CO2 was verified to be the primary product. Photocatalytic mineralization of toluene in air over Bi2O2CO3 was proposed. This work may provide a foundation for application of annealed Bi2O2CO3 in indoor air purification.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
3
Citations
NaN
KQI