Reduced graphene oxide supported MnO2 nanorods as recyclable and efficient adsorptive photocatalysts for pollutants removal

2019 
Abstract The emerging concept of two dimensional (2D) hybrid materials with large surface area and good interfacial contacts is highly desirable for diverse catalytic applications. Herein, we have designed and developed novel 1D-2D nanocomposite by loading manganese dioxide (MnO 2 ) nanorods over reduced graphene oxide (RGO) nanosheets by facile hydrothermal synthesis method to exploit the large surface area, close contact of 1D-2D components with abundant reaction sites. The as prepared MnO 2 -RGO nanocomposite has been characterized in detail using state-of-art techniques and has been successfully utilized efficient adsorptive photocatalysts for the removal of a colored dye (neutral red) and a colorless pollutant (ciprofloxacin) from water. In addition, the stability and recyclability of this catalyst has also been demonstrated. This work is expected to pave way for the development of many new 1D-2D binary nanocomposite catalysts for environmental remediation applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    46
    Citations
    NaN
    KQI
    []