Platform tailored co-design of gate-based quantum simulation.

2021 
The utility of near-term quantum computers and simulators is likely to rely upon software-hardware co-design, with error-aware algorithms and protocols optimized for the platforms they are run on. Here, we show how knowledge of noise in a system can be exploited to improve the design of gate-based quantum simulation algorithms. We concretely demonstrate this co-design in the context of a trapped ion quantum simulation of the dynamics of a Heisenberg spin model. Specifically, we derive a theoretical noise model describing unitary gate errors due to heating of the ions' collective motion, finding that the temporal correlations in the noise induce an optimal gate depth. We then illustrate how tailored feedforward control can be used to mitigate unitary gate errors and improve the simulation outcome. Our results provide a practical guide to the co-design of gate-based quantum simulation algorithms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []