Quasi-static Simulation Method of Earthquake Cycles Based on Viscoelastic Finite Element Modeling

2020 
Earthquake cycle simulations are important for studying earthquake generation processes and physics-based earthquake damage estimations. Earthquake cycle simulation methods typically assume a frictional constitutive relation on a known fault plane in a solid continuum and calculate earthquake evolution as spontaneous fault slip. To carry out such simulations, the boundary integral equation method, based on an elastic half-space, is widely used. In this approach, stress change around the fault plane due to crustal deformation can be computed analytically, but physical properties such as three-dimensional heterogeneous structure and viscoelastic deformation in mantle are generally not taken into account. Here, we incorporate such complex physical properties in the earthquake cycle simulation based on finite element modeling, using state-of-the-art techniques in computational science. We apply the proposed method to a fundamental problem of earthquake cycle generation and obtain results consistent with past studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []