Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-Assembly of Gold Nanorods

2017 
In this study, we present a valence states modulation strategy for picomole level assay of Hg2+ using directional self-assembly of gold nanorods (AuNRs) as signal readout. Hg2+ ions are first controllably reduced to Hg+ ions by appropriate ascorbic acid, and the reduced Hg+ ions react with the tips of the preadded AuNRs and form gold amalgam. Such Hg+ decorated AuNRs then end-to-end self-assemble into one-dimensional architectures by the bridging effects of lysine based on the high affinity of NH2–Hg+ interactions. Correspondingly, the AuNRs’ longitudinal surface plasmon resonance is gradually reduced and a new broad band appears at 900–1100 nm region simultaneously. The resulting distinctly ratiometric signal output is not only favorable for Hg2+ ions detection but competent for their quantification. Under optimal conditions, the linear range is 22.8 pM to 11.4 nM, and the detection limit is as low as 8.7 pM. Various transition/heavy metal ions, such as Pb2+, Ti2+, Co2+, Fe3+, Mn2+, Ba2+, Fe2+, Ni2+, Al3...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    12
    Citations
    NaN
    KQI
    []