Denoising and deblurring of Fourier transform infrared spectroscopic imaging data
2012
Fourier transform infrared (FT-IR) spectroscopic imaging is a powerful tool to obtain chemical information from
images of heterogeneous, chemically diverse samples. Significant advances in instrumentation and data processing
in the recent past have led to improved instrument design and relatively widespread use of FT-IR imaging, in a
variety of systems ranging from biomedical tissue to polymer composites. Various techniques for improving signal
to noise ratio (SNR), data collection time and spatial resolution have been proposed previously. In this paper
we present an integrated framework that addresses all these factors comprehensively. We utilize the low-rank
nature of the data and model the instrument point spread function to denoise data, and then simultaneously
deblurr and estimate unknown information from images, using a Bayesian variational approach. We show that
more spatial detail and improved image quality can be obtained using the proposed framework. The proposed
technique is validated through experiments on a standard USAF target and on prostate tissue specimens.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
4
Citations
NaN
KQI