The damage depth profile effect on hydrogen isotope retention behavior in heavy ion irradiated tungsten

2017 
Abstract To evaluate the damage depth profile effect on hydrogen isotope retention in tungsten (W), combination usage of 0.8 MeV and 6.0 MeV Fe ions were implanted into W with the damage concentrations between 0.03 and 0.1 dpa. Thereafter, 1.0 keV deuterium ion (D 2 + ) implantation was performed with the flux of 1.0 × 10 18 D + m −2  s −1 up to the fluence of 1.0 × 10 22 D + m −2 , and the D retention behavior was evaluated by thermal desorption spectroscopy (TDS). The experimental results indicated that 6.0 MeV Fe ion irradiation would introduce vacancies and voids into bulk that were clearly controlled by the damage concentration, and the voids would become the most stable D trapping sites. It was found that D de-trapping from irradiation defects at lower temperature would be enhanced by the accumulation of defect near the surface due to 0.8 MeV Fe ion irradiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    9
    Citations
    NaN
    KQI
    []