Slow internal protein dynamics in solution
2014
Large-scale domain dynamics in proteins are found when flexible linkers or hinges connect domains. The related conformational changes are often related to the function of the protein, for example by arranging the active center after substrate binding or allowing transport and release of products. The adaptation of a specific active structure is referred to as ?induced fit? and is challenged by models such as ?conformational sampling?. Newer models about protein function include some flexibility within the protein structure or even internal dynamics of the protein. As larger domains contribute to the configurational changes, the timescale of the involved motions is slowed down. The role of slow domain dynamics is being increasingly recognized as essential to understanding the function of proteins. Neutron spin echo spectroscopy (NSE) is a technique that is able to access the related timescales from 0.1 up to several hundred nanoseconds and simultaneously covers the length scale relevant for protein domain movements of several nanometers distance between domains. Here we focus on these large-scale domain fluctuations and show how the structure and dynamics of proteins can be assessed by small-angle neutron scattering and NSE.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
79
References
45
Citations
NaN
KQI