Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine

2014 
The compound-structure permanent-magnet synchronous machine (CS-PMSM) is a power-split device which can enable the internal combustion engine (ICE) to operate at optimum efficiency during all driving conditions by controlling its torque and speed. However, the CS-PMSM has more serious temperature rise and heat dissipation problems than conventional permanent-magnet (PM) machines, especially when the CS-PMSM is running at low speed and under full load conditions. As the thermal resistance of double-layer air gaps is quite big, the hot spot proves to be in the inner winding rotor. To ensure the safe operation of the CS-PMSM, the use of forced-air and water cooling in the inner winding rotor are investigated. The study shows that the water cooling can provide a better cooling effect, but require a complicated mechanical structure. Considering the complexity of the high efficiency cooling system, a real-time temperature monitoring method is proposed and a temperature measuring system which can accurately measure the real-time temperature of multiple key points in the machine is developed to promptly adjust the operating and cooling conditions based on the measured temperature results. Finally, the temperature rise experiment of the CS-PMSM prototype is done and the simulation results are partly validated by the experimental data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    14
    Citations
    NaN
    KQI
    []