Fine-scale analysis of gain-coupled MQW DFB lasers

1997 
In gain-coupled (GC) multiple-quantum-well (MQW) distributed feedback (DFB) lasers, phenomena on the submicron scale corresponding to quantum-well active regions with etched Bragg gratings have been shown to affect overall laser performance. In this paper we present results combining submicron bi-dimensional modeling with a fine-scale longitudinal transfer matrix calculation, above threshold. This has the benefit of considering both the detailed bi-dimensional carrier behaviour at the Bragg-wavelength scale and the larger scale DFB effects such as the longitudinal spatial hole burning and the non-uniform current injection along the the laser cavity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    2
    Citations
    NaN
    KQI
    []