Advanced Method for Motion Control of a 3 DOFs Lower Limb Rehabilitation Robot

2019 
This paper presents two motion control methods for a lower limb rehabilitation robot based on compensate gravity proportional-derivative and inverse dynamic proportional-derivative (PD) control algorithms. The Robot’s mechanism is comprised of three active joints: hip joint, knee joint and ankle joint, which are driven by DC motors. Firstly, based on Robot’s mechanism, a dynamic model of the Robot is built. Then, based on Robot’s model, motion control systems for Robot are designed. Simulation results show good performances and workability of these proposed controllers. Finally, the calculation of the joint angle errors and toque of each controller is performed. The comparison of simulation results between proposed controllers and the adaptive fuzzy controller allows to choice suitable motion control methods for Robot that can meet the requirements of a 3 DOFs lower limb rehabilitation robot for post-stroke patient.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []