In situ-formed cobalt embedded into N-doped carbon as highly efficient and selective catalysts for the hydrogenation of halogenated nitrobenzenes under mild conditions

2020 
Abstract Inhibiting the dehalogenation is the main challenge when halogenated nitrobenzenes are hydrogenated using H2 as hydrogen source by heterogeneous catalysis. Herein, the earth-abundant cobalt embedded into N-doped carbon (Co@CN) catalysts were fabricated via one-pot pyrolysis of tannic acid, Co(NO3)2·6H2O and melamine, which can function as a highly efficient non-noble-metal-based heterogeneous catalyst for selective hydrogenation of halogenated nitrobenzenes. Chloroanilines, bromoanilines, and iodoanilines, including all regioisomers, could be obtained with excellent selectivity (typically >99 %) at 60 °C under 1 MPa H2, at almost complete conversion of the substrates. Additionally, Co@CN demonstrated excellent catalytic stability and could be reused at least five times without obvious loss of catalytic activity and selectivity. Therefore, the Co@CN catalyst exhibits vast potential for future industrial application in the selective hydrogenation of halogenated nitrobenzenes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    13
    Citations
    NaN
    KQI
    []