FGF2 Prevents Sunitinib-Induced Cardiotoxicity in Zebrafish and Cardiomyoblast H9c2 Cells

2016 
Sunitinib is used extensively in the treatment of metastatic renal cell carcinoma and imatinib-resistant gastrointestinal stromal tumors. However, the undesirable cardiotoxic effects of sunitinib, such as congestive heart failure and hypertension, limit its use in the clinical setting. As multiple receptor tyrosine kinases are inhibited by sunitinib, it raises a question as to which target mediates sunitinib-induced cardiotoxicity. Here, we reported that the injection of fibroblast growth factor 2 (FGF2) mRNA into one- to two-cell stage embryos protected against sunitinib-induced cardiotoxicity in zebrafish. In addition, FGF2 significantly prevented sunitinib-induced cardiotoxicity in cardiomyoblast H9c2 cells, possibly via activating the PLC-γ/c-Raf/CREB pathway. Importantly, FGF2 did not compromise the antitumor activity of sunitinib in Caki-1 and OS-RC-2 renal cell carcinoma cells. Molecular docking simulations further revealed an interaction between the tyrosine kinase domain of FGF receptor 1 (FGFR1) and sunitinib. Taken together, our results clearly demonstrated that FGF2 inhibition plays an important role in sunitinib-induced cardiotoxicity both in vitro and in vivo. This study also provided a basis for further research on sunitinib-induced cardiotoxicity and may allow rational design of new sunitinib derivatives with fewer or weak cardiotoxic effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    14
    Citations
    NaN
    KQI
    []