In situ measurement of stress generation arising from dislocation inclination in AlxGa1−xN:Si thin films

2008 
The effect of Si-doping on the stress and microstructure of AlxGa1−xN (x≈0.39–0.45) films grown by metalorganic chemical vapor deposition on SiC substrates was investigated. In situ measurements revealed a compressive-to-tensile transition of the stress state at the film surface upon the addition of SiH4 during growth, which correlated with a change in the angle of inclination of threading dislocations in the film. The magnitude of the in situ measured stress gradient was comparable to that predicted by the dislocation effective climb model, suggesting that dislocation inclination is the dominant mechanism responsible for tensile stress generation in the films.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    20
    Citations
    NaN
    KQI
    []