Ramsauer–Townsend minimum in electron scattering from CF $$_4$$ 4 : modified effective range analysis

2021 
Elastic cross sections for electron scattering on tetrafluoromethane (CF $$_4$$ ) from 0 up to 5 eV energy are analyzed using semi-analytical approach to the modified effective range theory (MERT). It is shown that energy and angular variations of differential, integral and momentum transfer cross sections can be parameterized accurately by six MERT coefficients up to the energy region of the resonant scattering. In particular, the model is used to determine the depth and the position of the Ramsauer–Townsend minimum as well as the s-wave scattering length. Moreover, we investigate the influence of the dipole polarizability value on the predictions of present model. To further validate our approach, the elastic data are combined with the Born-dipole cross sections for vibrational excitations as the input data for Monte Carlo simulation of electron swarm coefficients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    1
    Citations
    NaN
    KQI
    []