Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae: a study by immunoelectron microscopy using frozen thin sections

1995 
The effects of hydrostatic pressure on subcellular structures, particularly the nucleus, of Saccharomyces cerevisiae were investigated by immunoelectron microscopy. Cells were treated with hydrostatic pressure from 0.1 to 400 MPa for 10 min at room temperature. Frozen thin sections of the cells revealed that spindle pole bodies disappeared at 100 MPa. At 150 MPa, the deposition of gold panicles for anti α-tubulin was noticed in the nucleus, although the filamentous structure of microtubules was lost. At 200 MPa, fewer gold particles were scattered in the nucleus and the nuclear membrane in several portions was also observed to be open at 300 MPa. These results show that elements of the nuclear division apparatus were susceptible to pressure stress, particularly spindle pole bodies and microtubules. The damage to spindle pole bodies, microtubules, and nuclear membrane caused by pressure stress was followed by the inhibition of nuclear division. After the release of pressure, the spindle pole bodies and microtubules of pressurized cells at below 200 MPa regained their normal appearance at 24 h.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    53
    Citations
    NaN
    KQI
    []