인공지능 : 계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계

2016 
본 논문에서는 계층적 특징 학습을 이용하여 물체의 컬러 영상과 깊이 영상으로부터 해당 물체가 속한 범주와 개체, 그리고 다양한 속성들을 효과적으로 인식할 수 있는 시스템을 제안한다. 본 시스템의 전처리 단계에서는 물체의 깊이 영상을 물체의 모양 정보를 좀 더 효과적으로 표현할 수 있는 표면 법선 벡터 데이터로 변환하고, 특징 학습 단계에서는 물체의 컬러 영상과 표면 법선 벡터 데이터로부터 두 단계에 걸쳐패치 단위 특징과 이미지 단위의 특징을 추출해낸다. 그리고 추출된 특징 벡터들과 SVM 학습 알고리즘을 이용하여 각기 독립적인 다수의 분류 모델들을 학습한다. 미국 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []