Laser Doppler Detection Systems for Gas Velocity Measurement

1970 
The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 μ. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 μ, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    88
    Citations
    NaN
    KQI
    []