Primary cilia-regulated transcriptome in the renal collecting duct

2018 
Renal tubular cells respond to mechanical stimuli generated by urinary flow to regulate the activity and transcript abundance of important genes for ion handling, cellular homeostasis, and proper renal development. The primary cilium, a mechanosensory organelle, is postulated to regulate this mRNA response. The aim of this study is to reveal the transcriptome changes of tubular epithelia in response to fluid flow and determine the role of primary cilia in this process. Inner-medullary collecting duct (CD) cells were subjected to either static or physiologically relevant fluid flow (∼0.6 dyn/cm2). RNA-sequencing analysis of ciliated cells subjected to fluid flow showed up-regulation of 1379 genes and down-regulation of 1294 genes compared with static control cells. Strikingly, only 54 of these genes were identified as gene candidates sensitive to primary cilia sensing of fluid flow, of which 16 were linked to ion or water transport pathways in the CD. Validation by quantitative real-time PCR revealed that ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    8
    Citations
    NaN
    KQI
    []