Nitrite-Mediated S-Nitrosylation of Caspase-3 Prevents Hypoxia-Induced Endothelial Barrier Dysfunction

2011 
Rationale:Hypoxia is a significant perturbation that exacerbates endothelial barrier dysfunction, contributing to the disruption of vascular homeostasis and the development of various diseases such as atherosclerosis and metastasis of tumors. To date, it is not known what strategy might be used to counter the effect of hypoxia on endothelial permeability. Objective:This study investigated the role of nitrite in regulating vascular integrity under hypoxic conditions. Methods and Results:We found denitrosylation and the resulting activation of caspase-3 to be critical for hypoxia-induced endothelial permeability. Nitrite treatment led to S-nitrosylation and the inactivation of caspase-3, suppressing the barrier dysfunction of endothelia caused by hypoxia. This process required the conversion of nitrite to bioactive nitric oxide in a nitrite reductase-dependent manner. Using primary human umbilical vein endothelial cells as a model, we showed that in the presence of nitrite, the S-nitrosylated and inactivate...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    27
    Citations
    NaN
    KQI
    []