Extracellular Matrix Dysfunction in Sorsby Patient-Derived Retinal Pigment Epithelium

2021 
Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD). SFD results from mutations found in the tissue inhibitor of metalloproteinase 3 (TIMP3) gene. TIMP3 is secreted by the retinal pigmented epithelium (RPE) into the underlying Bruch9s membrane (BrM), and it plays a critical role in maintaining extracellular matrix (ECM) homeostasis. A characteristic feature of post-mortem SFD globes is a thick layer of sub-RPE deposits overlying a disorganized BrM. Although likely central to the pathogenesis of SFD, no animal models have reproduced this phenotype. We generated induced pluripotent stem cell (iPSC)-derived RPE lines from SFD family members with the S204C TIMP3 mutation and observed that SFD RPE have highly dysregulated ECM and form large basal deposits by ~30 days in culture. The sub-RPE deposits are similar in ultrastructure and composition when compared to SFD family member globes. Mutant TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in the reversal of sub-RPE calcium deposition. We found that SFD TIMP3 has decreased inhibition of secreted matrix metalloproteinases. ECM dysfunction substantially impacts cellular metabolism. Targeted metabolomics data showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE. Further, SFD RPE also has decreased intracellular reduced glutathione and is more vulnerable to oxidative stress. These findings suggest that key elements of SFD pathology can be recapitulated in culture which may lead to insights into disease mechanisms and potential treatments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []