Zero-Power Calibration of Photonic Circuits at Cryogenic Temperatures

2021 
The continual success of superconducting photon-detection technologies in quantum photonics asserts cryogenic-compatible systems as a cornerstone of full quantum photonic integration. Here, we present a way to reversibly fine-tune the optical properties of individual waveguide structures through local changes to their geometry using solidified xenon. Essentially, we remove the need for additional on-chip calibration elements, effectively zeroing the power consumption tied to reconfigurable elements, with virtually no detriment to photonic device performance. We enable passive circuit tuning in pressure-controlled environments, locally manipulating the cladding thickness over portions of optical waveguides. We realize this in a cryogenic environment, through controlled deposition of xenon gas and precise tuning of its thickness using sublimation, triggered by on-chip resistive heaters. $\pi$ phase shifts occur over a calculated length of just $L_{\pi}$ = 12.3$\pm$0.3 $\mu m$. This work paves the way towards the integration of compact, reconfigurable photonic circuits alongside superconducting detectors, devices, or otherwise.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []