Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea

2020 
Abstract Lead pollution are critical concerns for food safety and human health. Herein, a ratiometric metal-induced G-quadruplex polymorphism was introduced to construct aptamer probes, enabling label-free and ratiometric detection of lead in tea, thus is promising for on-site detection of lead pollution. The key feature of the aptamer probe is the synergistic utilization of the dual-wavelength fluorescent signal outputs from a G-quadruplex specific dye and a DNA intercalation dye under a single-wavelength excitation, leading to a more stable and reliable recognition of Pb2+ than that of analyses based on single fluorescent reporter. The aptamer probe allowed to a mix-and-read, rapid, cost-effective detection of Pb2+ with high specificity and accuracy. Pb2+ analysis in tap water and tea exhibited good performance with recovery rates of 92.3%-109.0%. The adoption of ratiometric metal-induced G-quadruplex polymorphism would be a compelling design strategy for constructing robust aptasensor, facilitating the translation of aptamer for food safety control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    12
    Citations
    NaN
    KQI
    []