Self-avoiding walks and polygons on hyperbolic graphs

2019 
We prove that for the $d$-regular tessellations of the hyperbolic plane by $k$-gons, there are exponentially more self-avoiding walks of length $n$ than there are self-avoiding polygons of length $n$, and we deduce that the self-avoiding walk is ballistic. The latter implication is proved to hold for arbitrary transitive graphs. Moreover, for every fixed $k$, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion $d-1-O(1/d)$ as $d\to \infty$; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length $n$ is comparable to the $n$th power of their connective constant. Some of these results were previously obtained by Madras and Wu \cite{MaWuSAW} for all but finitely many regular tessellations of the hyperbolic plane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []