Phenological shifts assist colonisation of a novel environment in a range-expanding raptor

2014 
In a rapidly changing world understanding the capacity of populations to adapt to novel environments is increasingly urgent. Timing of breeding can be a highly flexible trait and adjustments in this trait can potentially buffer populations from climate change and facilitate the colonisation of new environments. Recent range-expansions into novel climatic regimes provide a valuable opportunity to investigate the implications of plasticity in timing of breeding for population processes. Black sparrowhawks have recently colonised the Cape Peninsula of South Africa where they experience dramatically different weather patterns to those in their historical range. These include a total reversal in the rainfall regime, with the majority of rain falling in the winter as opposed to the summer months. We investigate the breeding phenology of black sparrowhawks in relation to both regional and local climate variation and, using a long-term dataset, explore the implications of phenological shifts for reproductive success and population growth following colonisation. In the recently colonised Cape Peninsula the breeding season began up to three months earlier than within their historical range and these early breeding attempts produced more offspring. Population models suggested that this adjustment assisted the colonisation of the Cape Peninsula, reducing the probability of extinction by 23%. Contrary to expectations, we found little support for the hypothesis that black sparrowhawks were responding to local variation in rainfall. We suggest that shifts in breeding phenology may be driven in part by other novel processes, such as interspecific competition for nest sites and lower temperatures during late summer. These results provide insight into the processes that facilitated the colonisation of a novel climatic regime highlighting the potential role of a diverse range of factors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    40
    Citations
    NaN
    KQI
    []