Compressive force strengthened the pro-inflammatory effect of zoledronic acid on il-1ß stimulated human periodontal fibroblasts.

2020 
OBJECTIVES The number of patients in dentistry taking bisphosphonates (BP) increases every year. There are only little data about the influence of biomechanical stress due to orthodontic treatment and periodontal inflammation in BP patients. This study focused on the effects of the induced inflammation by IL-1s in compressed human periodontal ligament fibroblasts (HPdLF) exposed to the nitrogen-containing BP zoledronate in vitro. MATERIALS AND METHODS HPdLF were incubated with 5 μmol/l zoledronate and 10 ng/ml IL-1s for 48 h. In the last 3 h, cells were exposed to a compressive, centrifugal force of 34.9 g/cm2. Cell viability was analyzed directly after the compressive force by MTT assay. Gene expression of COX-2 and IL-6 was investigated using quantitative qRT-PCR. PGE-2 and IL-6 protein secretion were measured via ELISA. RESULTS The cell viability of HPdLF was not affected. Without inflammatory pre-stimulation, COX-2 expression was increased by compression and zoledronate. IL-6 expression was increased under compression. On secretion level, the combination of compression and zoledronate induced a slightly increase of IL-6 secretion. In contrast, inflammatory pre-stimulation strengthened the compressive upregulation of COX-2, as well as induced a higher PGE-2 secretion. Further addition of zoledronate to pre-stimulated cells additionally strengthened the compression-induced upregulation of COX-2 and IL-6 expression as well as protein secretion compared to all other groups. CONCLUSIONS Biomechanical stress might trigger a pro-inflammatory potential of BP further enhanced in the presence of an inflammatory pre-stimulation. CLINICAL RELEVANCE To prevent excessive host inflammatory responses, occlusal overloading and mechanical stress due to orthodontic treatment should be avoided in BP patients with untreated periodontitis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []