Data analytics for quality management in Industry 4.0 from a MSME perspective

2021 
Advances in smart technologies (Industry 4.0) assist managers of Micro Small and Medium Enterprises (MSME) to control quality in manufacturing using sophisticated data-driven techniques. This study presents a 3-stage model that classifies products depending on defects (defects or non-defects) and defect type according to their levels. This article seeks to detect potential errors to ensure superior quality through machine learning and data mining. The proposed model is tested in a medium enterprise—a kitchenware company in Turkey. Using the main features of data set, product, customer, country, production line, production volume, sample quantity and defect code, a Multilayer Perceptron algorithm for product quality level classification was developed with 96% accuracy. Once a defect is detected, an estimation is made of how many re-works are required. Thus, considering the attributes of product, production line, production volume, sample quantity and product quality level, a Multilayer Perceptron algorithm for re-work quantity prediction model was developed with 98% performance. From the findings, re-work quantity has the highest relation with product quality level where re-work quantities were higher for major defects compared to minor/moderate defects. Finally, this work explores the root causes of defects considering production line and product quality level through association rule mining. The top mined rule achieves a confidence level of 80% where assembly and material were identified as main root causes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []