Charge photogeneration in few-layer MoS2

2015 
The 2D semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, suggesting excitons as the primary photoexcited species. Nevertheless, even single layers show a strong photovoltaic effect and work as the active material in high sensitivity photodetectors, thus indicating efficient charge carrier photogeneration. Here, modulation spectroscopy in the sub-ps and ms time scales is used to study the photoexcitation dynamics in few-layer MoS2. The results suggest that the primary photoexcitations are excitons that efficiently dissociate into charges with a characteristic time of 700 fs. Based on these findings, simple suggestions for the design of efficient MoS2 photovoltaic and photodetector devices are made.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    66
    Citations
    NaN
    KQI
    []