Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging

2002 
Objectives: The differential diagnosis between typical idiopathic Parkinson's disease (PD) and the striatonigral variant of multiple system atrophy (MSA-P) is often difficult because of the presence of signs and symptoms common to both forms of parkinsonism, particularly at symptom onset. This study investigated striatal and midbrain findings in MSA-P and PD patients in comparison with normal controls with the use of positron emission tomography (PET) and three dimensional magnetic resonance imaging (3D MRI) based volumetry to increase the differential diagnostic accuracy between both disease entities. Methods: Nine patients with MSA-P, 24 patients with PD, and seven healthy controls were studied by MRI and PET with 6-[18F]-fluoro-L-dopa (FDOPA), [18F]fluoro-deoxyglucose (FDG), and 11-C-Raclopride (RACLO). Striatal and extrastriatal volumes of interest (VOI) were calculated on the basis of the individual MRI data. The PET data were transferred to the VOI datasets and subsequently analysed. Results: MSA-P differed significantly from PD patients in terms of decreased putaminal volume, glucose metabolism, and postsynaptic D2 receptor density. The striatal FDOPA uptake was equally impaired in both conditions. Neither MRI volumetry nor PET imaging of the midbrain region further contributed to the differential diagnosis between PD and MSA-P. Conclusions: The extent and spatial distribution of functional and morphological changes in the striatum permit the differentiation of MSA-P from PD. Both, multi-tracer PET and 3D MRI based volumetry, may be considered equivalent in the assessment of different striatal abnormality in both disease entities. In contrast, MRI and PET imaging of the midbrain does not provide a further gain in diagnostic accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    188
    Citations
    NaN
    KQI
    []