Effect of the polymeric coating thickness on the photocurrent performance of titanium dioxide nanorod arrays-polyaniline composite-based UV photosensor

2018 
Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a one-step immersion method in a glass container. The effect of the polymeric coating thickness of p-type polyaniline (PANI) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated photosensor demonstrated an increased photocurrent under UV irradiation in correlation with the thickness layer of PANI. The measured UV response showed the highest photocurrent of 0.014 µA at 1.0 V of reverse bias with low dark current under the UV radiation (365 nm, 750 µW/cm2). The thickness of the PANI film improved the photocurrent of the fabricated TNAs/PANI composite-based UV photosensor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []