Immune modulation of the pulmonary hypertensive response to bacterial lipopolysaccharide (endotoxin) in broilers

2004 
The lungs of broilers are constantly challenged with lipopolysaccharide (LPS, endotoxin) that can activate leukocytes and trigger thromboxane A 2 (TxA 2 )-and serotonin (5HT)-mediated pulmonary vasoconstriction leading to pulmonary hypertension. Among broilers from a single genetic line, some individuals respond to LPS with large increases in pulmonary arterial pressure, whereas others fail to exhibit any response to the same supramaximal dose of LPS. This extreme variability in the pulmonary hypertensive response to LPS appears to reflect variability in the types or proportions of chemical mediators released by leukocytes. Our research has confirmed that TxA 2 and 5HT are potent pulmonary vasoconstrictors in broilers and that broilers hatched and reared together consistently exhibit pulmonary hypertension after i.v. injections of TxA 2 or 5HT. Previous in vitro studies conducted using macrophages from different lines of chickens demonstrated innate variability in the LPS-stimulated induction of nitric oxide synthase (iNOS) followed by the onset of an LPS-refractory state. The NOS enzyme converts arginine to citrulline and nitric oxide (NO). It is known that NO produced by endothelial NOS serves as a key modulator of flow-dependent pulmonary vasodilation, and it is likely that NO generated by iNOS also contributes to the pulmonary vasodilator response. Accordingly, it is our hypothesis that the pulmonary hypertensive response to LPS in broilers is minimal when more vasodilators (NO, prostacyclin) than vasoconstrictors (TxA 2 , 5HT) are generated during an LPS challenge. Indeed, inhibiting NO production through pharmacological blockade of NOS with the inhibitor N ω -nitro-L-arginine methyl ester modestly increased the baseline pulmonary arterial pressure and dramatically increased the pulmonary hypertensive response to LPS in all broilers evaluated. Innate differences in the effect of LPS on the pulmonary vasculature may contribute to differences in susceptibility of broilers to pulmonary hypertension syndrome (ascites).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    277
    References
    49
    Citations
    NaN
    KQI
    []