Oxidation of Flavone, 5-Hydroxyflavone, and 5,7-Dihydroxyflavone to Mono-, Di-, and Tri-Hydroxyflavones by Human Cytochrome P450 Enzymes
2019
Biologically active plant flavonoids, including 5,7-dihydroxyflavone (57diOHF, chrysin), 4′,5,7-trihydroxyflavone (4′57triOHF, apigenin), and 5,6,7-trihydroxyflavone (567triOHF, baicalein), have important pharmacological and toxicological significance, e.g., antiallergic, anti-inflammatory, antioxidative, antimicrobial, and antitumorgenic properties. In order to better understand the metabolism of these flavonoids in humans, we examined the oxidation of flavone, 5-hydroxyflavone (5OHF), and 57diOHF to various products by human cytochrome P450 (P450 or CYP) and liver microsomal enzymes. Individual human P450s and liver microsomes oxidized flavone to 6-hydroxyflavone, small amounts of 5OHF, and 11 other monohydroxylated products at different rates and also produced several dihydroxylated products (including 57diOHF and 7,8-dihydroxyflavone) from flavone. We also found that 5OHF was oxidized by several P450 enzymes and human liver microsomes to 57diOHF and further to 567triOHF, but the turnover rates in thes...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
6
Citations
NaN
KQI