Adaptive Output Feedback Fuzzy Fault-Tolerant Control for Nonlinear Full-State-Constrained Switched Systems.

2021 
In this article, an output feedback adaptive fuzzy tracking control method for a class of switched uncertain nonlinear systems with actuator failures and full-state constraints is proposed under an arbitrary switching signal combining the dynamic surface technique. Since the state variables of the system under study are not measurable, a fuzzy observer is constructed to identify the unmeasured states. The actuator failures are considered in the system. To compensate this failure, a fault-tolerant controller is proposed. Moreover, each state needs to be kept within the constraints, so the tangent Barrier Lyapunov function is selected to solve the full-state constraint problem, and the unknown nonlinear function is approximated by fuzzy-logic systems (FLSs). We also proved that all signals in the closed-loop system are bounded. Furthermore, the states can be kept within the predetermined range even if the actuator fails. Finally, a simulation example is given to verify the effectiveness of the proposed control strategy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []